Distinguishing Anesthetized from Awake State in Patients: A New Approach Using One Second Segments of Raw EEG
نویسندگان
چکیده
Objective: The objective of this study was to test whether properties of 1-s segments of spontaneous scalp EEG activity can be used to automatically distinguish the awake state from the anesthetized state in patients undergoing general propofol anesthesia. Methods: Twenty five channel EEG was recorded from 10 patients undergoing general intravenous propofol anesthesia with remifentanil during anterior cervical discectomy and fusion. From this, we extracted properties of the EEG by applying the Directed Transfer Function (DTF) directly to every 1-s segment of the raw EEG signal. The extracted properties were used to develop a data-driven classification algorithm to categorize patients as "anesthetized" or "awake" for every 1-s segment of raw EEG. Results: The properties of the EEG signal were significantly different in the awake and anesthetized states for at least 8 of the 25 channels (p < 0.05, Bonferroni corrected Wilcoxon rank-sum tests). Using these differences, our algorithms achieved classification accuracies of 95.9%. Conclusion: Properties of the DTF calculated from 1-s segments of raw EEG can be used to reliably classify whether the patients undergoing general anesthesia with propofol and remifentanil were awake or anesthetized. Significance: This method may be useful for developing automatic real-time monitors of anesthesia.
منابع مشابه
P81: Detection of Epileptic Seizures Using EEG Signal Processing
Epilepsy is the most common brain diseases that cause many problems in the daily life of the patient. In most attempts to automatic detection, the attack used an EEG. In this paper, The complete data set consists of five sets recorded from normal and epileptic patients. Each set containing 100 single-channel EEG segments. Here we used first and last sets (A and E). Set A consisted of segments r...
متن کاملA Unique Approach of Noise Elimination from Electroencephalography Signals between Normal and Meditation State
In this paper, unique approach is presented for the electroencephalography (EEG) signals analysis. This is based on Eigen values distribution of a matrix which is called as scaled Hankel matrix. This gives us a way to find out the number of Eigen values essential for noise reduction and extraction of signal in singular spectrum analysis. This paper gives us an approach to classify the EEG signa...
متن کاملثبت دگرسویی آستانههای پاسخ پایدار شنوایی
Background & Aim:Auditory steady�state response (ASSR) is an oscillation in the electrical potential recorded from the scalp. In this study, the possible effects of shifting the response recording channel on 40Hz ASSR thresholds and their recording times were evaluated and compared.Patients and Method:In this cross-sectional�study, 30 subjects with normal hearing (thresholds of 500 to 4000 ...
متن کاملChoosing the Distinguishing Frequency Feature of People Addicted to Heroin from Healthy while Resting
Addiction is a biological, psychological, and social disease. Several factors are involved in etiology, substance abuse, and addiction which interact with each other and lead to the beginning of drug use and then addiction. Heroin is an addictive drug that, by acting on the central nervous system, reduces the density of neurons in the brain and interferes with decision making. This paper examin...
متن کاملAssessment of Anesthesia Depth Using Effective Brain Connectivity Based on Transfer Entropy on EEG Signal
Introduction: Ensuring an adequate Depth of Anesthesia (DOA) during surgery is essential for anesthesiologists. Since the effect of anesthetic drugs is on the central nervous system, brain signals such as Electroencephalogram (EEG) can be used for DOA estimation. Anesthesia can interfere among brain regions, so the relationship among different areas can be a key factor in the anesthetic process...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2018